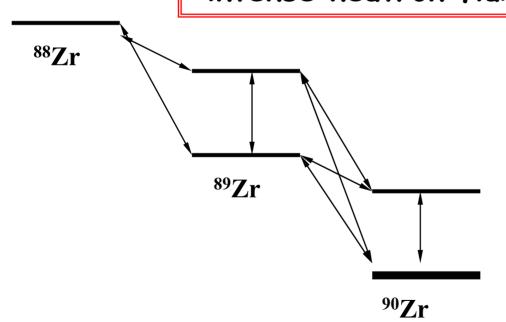


The Recyclotron Project at LBNL

Peggy McMahan

Lawrence Berkeley National Laboratory


Nuclear Science Division

Data Needs for Science-based Stockpile Stewardship [SBSS]

Certain elements are used as neutron flux monitors in brief, intense neutron flux environments.

Example - Zirconium

- 1. Begin with only ⁹⁰Zr.
- 2. Neutron flux induces nuclear reactions.
- 3. Measuring ratios such as 88Zr/89Zr gives info on neutron flux

Neutron cross-sections must be known accurately!

Direct neutron measurements on radioactive targets are VERY difficult

Multiple Steps

- Production
 - Need high intensity light ion accelerator
- Target Chemistry
 - Considerable radiation safety issues
 - Target purity issues
- Neutron bombardment
 - Need neutron facility close to production accelerator (proximity is half-life dependent)
- Off-line Counting
 - Need low background, well calibrated facility available for extended period of time

Example: Measure of 89Zr(n,2n)88Zr and 89Zr(n,np)88Y Cross Sections

Production of ⁸⁹Zr in the ⁸⁹Y(p,n) reaction

$$t_{1/2} = 3.27 \, days$$

Chemical Separation of Zr and Y

Radioactivity ~ 1 Ci

- 3. Neutron Irradiation
- Gamma-ray Counting of ⁸⁹Zr (for half-life measurement), ⁸⁸Zr (n,2n product) and ⁸⁸Y (n,np product)

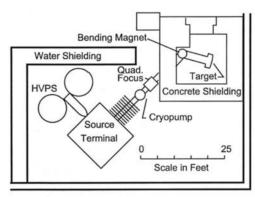
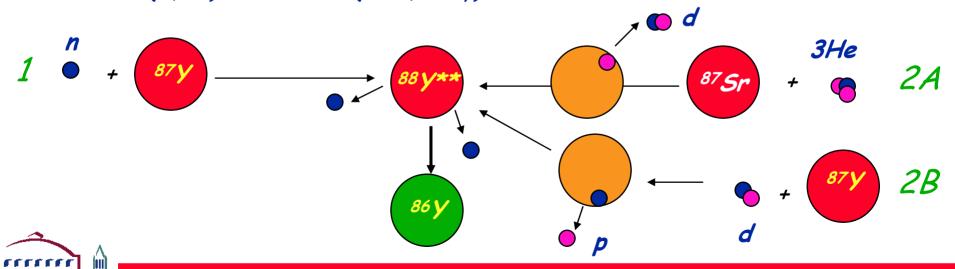


Figure 1. Major Components of RTNS Facility.

- 1. Biomedical Isotope Facility (BIF), LBNL 40 μA, 11 MeV protons
- 2. Hot cells at BIF, LBNL
- 3. Rotating Target Neutron Source (RTNS), UCB

10¹⁰/sec 14-15 MeV neutrons

4. Gamma ray counting facility, LLNL


Paths to neutron cross sections of unstable species

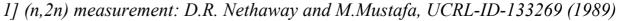
Neutron
 measurements on
 radioactive targets

EXAMPLE:

 87 Y $(n,2n)^{86}$ Y $\Leftrightarrow ^{87}$ Sr $(^{3}$ He,d 2 n $_{Y})^{86}$ Y

- Surrogate chargedparticle reactions
 - A. Normal kinematics on stable or unstable targets
 - B. Inverse kinematics with stable or radioactive beams

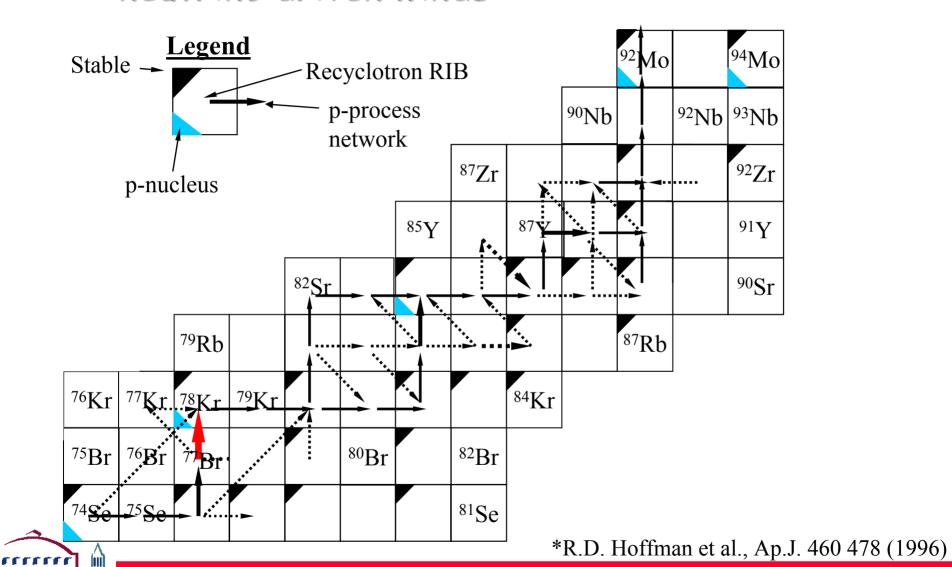
Surrogate Reactions around A=80


- o [d,p] neutron transfer to CN
 - best angular momenta and energy match
 - Intense beams available for normal kinematics
 - Requires same target as neutron measurement
 - ⇒ advantageous in inverse kinematics with RIBs
- o [3He,d] proton transfer to CN
 - Higher angular momenta and excitation energies ⇒ more modeling involved
 - Intense beams available for normal kinematics
 - For odd Z CN, have more stable targets isotopes available
 - ⇒ advantageous in normal kinematics with stable or longlived radioactive targets

Possible Reactions - Yttrium

Target for $(n,2n)$, (n,γ) , (n,n')	Half- life	[d,p] target	[³He,d] target
86 y	14.7h	86 y	⁸⁶ Sr
87 y 87m y	79.8h 13.4h	87 y	⁸⁷ Sr
88 Y [1]	106.6d	88 y	⁸⁸ Sr
⁸⁹ У [2]	stable	89 y	⁸⁹ Sr
90 y	64.1h	90 y	⁹⁰ Sr
91 y	58.5d	91 y	⁹¹ Sr
92 y	3.54h	92 y	⁹² Sr

^{2]} all neutron measurements: M. Wagner et al, Ann Nucl. Eng. 16, 623 (1989)


Possible Reactions - Zirconium

Target $(n,2n)$, (n,γ) , (n,n')	Half- life	[d,p] target	[³He,d] target
⁸⁶ Zr	16.5h	86Zr	86 y
⁸⁷ Zr	1.71h	⁸⁷ Zr	87 y
⁸⁸ Zr	83.4d	⁸⁸ Zr	88 y
⁸⁹ Zr	3.27d	⁸⁹ Zr	89 y
⁹⁰ Zr	stable	⁹⁰ Zr	90 y
⁹¹ Zr	stable	⁹¹ Zr	91 y
⁹² Zr	stable	⁹² Zr	92 y

Nucleosynthesis of light p-nuclei in SNII neutrino driven winds*

- Unstable beam and target production
- Direct charged particle measurements
- Surrogate measurements in normal kinematics
- Produce quasi-monoenergetic neutron beams (under construction)

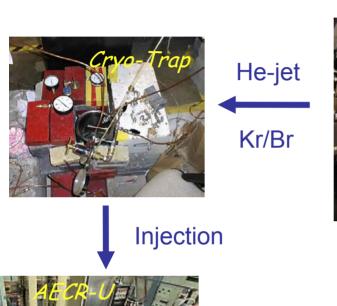
AECR-U

- high ionization efficiency for RIBs
- Low and high temp ovens available

We're no longer a National User Facility, but funding is in place to continue operation.

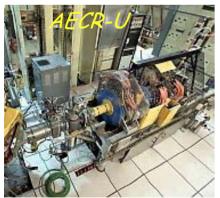
Three ways to use the 88-Inch Cyclotron

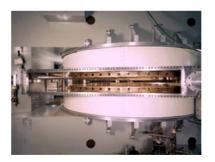
- 1. Measure neutron cross sections directly
 - Intense deuteron beams allow production of quasimonoenergetic neutron beams with good intensity
 - Short-lived radioactive targets can be made using highintensity light-ion beams
- 2. Surrogate measurements in normal kinematics
 - High-intensity light-ion beams combined with STARS and clover detectors (e.g. Bernstein talk) on stable targets
- 3. Surrogate cross section measurements in inverse kinematics
 - Recyclotron beams of medium-lifetime species on solid or gas targets



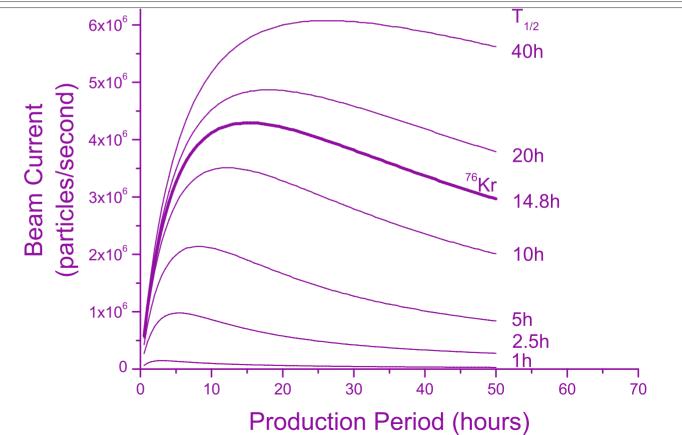
- o A high-production cross section reaction is used to make a large number (10^{14-17}) of radioactive nuclei.
- o The radioactive nuclei are removed from the target using either physical (boiling) or chemical means.
- o These nuclei can then be re-injected into accelerator for use in RIB experiments.
- o RIB intensities are influenced by several factors:
 - Lifetime
 - Primary beam current
 - Production cross section
 - Ease of extraction

First successful beam: 76 Kr

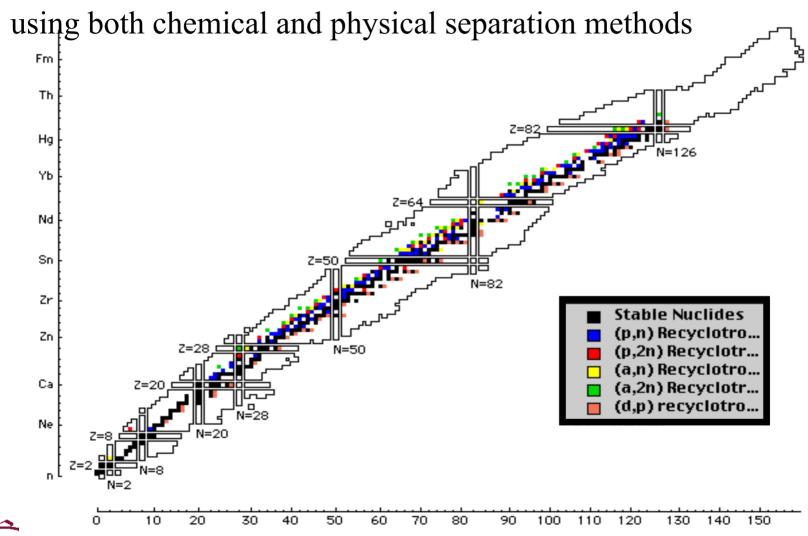

August 2003 - g-factor measure of 76 Kr (Rutgers, LLNL, LBNL)



Acceleration


×

magnetic moment measurement



Batch	Production Period (hours)	Average Current (p A)	⁷⁶ Kr atoms PACE	⁷⁶ Kr atoms in trap	Production efficiency (%)	⁷⁶ Kr through cyclotron	AECR-U+cyclotron efficinecy (%)
1	39	5.0(5)	4.3(4)x10 ¹⁴	1.0(3)x10 ¹⁴	23(7)	2.0(4)x10 ¹¹	0.20(7)
2	15	5.6(5)	2.9(3)x10 ¹⁴	3.4(9)x10 ¹³	12(3)	7(2)x10 ¹¹	2.2(8)
3	17	6.0(5)	3.6(4)x10 ¹⁴	4.3(9)x10 ¹³	12(3)	6(2)x10 ¹¹	1.4(6)

Potential re-cyclotron beams

Many beams possible over the entire chart of nuclides

The Collaboration

- LBNL
 - Peggy McMahan
 - James Powell
 - Charles Silver
 - Daniela Wutte
- o LLNL
 - Lee Bernstein
 - Jeff Cooper
 - Larry Ahle
 - D. Dashdorj
 - Andreas Schiller
- Rutgers University
 - Noemi Benczer-Koller
 - Gerfried Kumbartzki
 - T.J. Mertzikemis

